3.8.53 \(\int \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\) [753]

3.8.53.1 Optimal result
3.8.53.2 Mathematica [A] (verified)
3.8.53.3 Rubi [A] (verified)
3.8.53.4 Maple [B] (warning: unable to verify)
3.8.53.5 Fricas [B] (verification not implemented)
3.8.53.6 Sympy [F]
3.8.53.7 Maxima [B] (verification not implemented)
3.8.53.8 Giac [F]
3.8.53.9 Mupad [F(-1)]

3.8.53.1 Optimal result

Integrand size = 28, antiderivative size = 102 \[ \int \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {(1+i) \sqrt {a} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \]

output
(1+I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^( 
1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d-2*cot(d*x+c)^(1/2)*(a+I*a*tan(d*x 
+c))^(1/2)/d
 
3.8.53.2 Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.92 \[ \int \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {\sqrt {\cot (c+d x)} \left (\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}-2 \sqrt {a+i a \tan (c+d x)}\right )}{d} \]

input
Integrate[Cot[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
(Sqrt[Cot[c + d*x]]*(Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt 
[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]] - 2*Sqrt[a + I*a*Tan[c + d* 
x]]))/d
 
3.8.53.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3042, 4729, 3042, 4031, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{3/2} \sqrt {a+i a \tan (c+d x)}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {i \tan (c+d x) a+a}}{\tan ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {i \tan (c+d x) a+a}}{\tan (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4031

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 a^2 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {(1+i) \sqrt {a} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

input
Int[Cot[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(((1 + I)*Sqrt[a]*ArcTanh[((1 + I)*S 
qrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*Sqrt[a + I* 
a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))
 

3.8.53.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4031
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-d)*(a + b*Tan[e + f*x])^m*((c + d*Ta 
n[e + f*x])^(n + 1)/(f*m*(c^2 + d^2))), x] + Simp[a/(a*c - b*d)   Int[(a + 
b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d 
, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^ 
2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -1]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.8.53.4 Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 492 vs. \(2 (84 ) = 168\).

Time = 39.45 (sec) , antiderivative size = 493, normalized size of antiderivative = 4.83

method result size
default \(\frac {i \sec \left (d x +c \right ) \left (i \cos \left (d x +c \right )+i+\sin \left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\cot ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (2 i \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sin \left (d x +c \right ) \arctan \left (\sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {2}-1\right )+2 i \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sin \left (d x +c \right ) \arctan \left (\sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {2}+1\right )+i \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sin \left (d x +c \right ) \ln \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+\sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {2}+1}{-\sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {2}-\csc \left (d x +c \right )+\cot \left (d x +c \right )+1}\right )+\sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sin \left (d x +c \right ) \ln \left (\frac {-\sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {2}-\csc \left (d x +c \right )+\cot \left (d x +c \right )+1}{\cot \left (d x +c \right )-\csc \left (d x +c \right )+\sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {2}+1}\right )+2 \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sin \left (d x +c \right ) \arctan \left (\sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {2}-1\right )+2 \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sin \left (d x +c \right ) \arctan \left (\sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {2}+1\right )-2 i \sqrt {2}\, \cos \left (d x +c \right )+2 i \sqrt {2}+2 \sin \left (d x +c \right ) \sqrt {2}\right ) \sqrt {2}}{4 d}\) \(493\)

input
int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/4*I/d*sec(d*x+c)*(I*cos(d*x+c)+I+sin(d*x+c))*(a*(1+I*tan(d*x+c)))^(1/2)* 
cot(d*x+c)^(3/2)*(2*I*(cot(d*x+c)-csc(d*x+c))^(1/2)*sin(d*x+c)*arctan((cot 
(d*x+c)-csc(d*x+c))^(1/2)*2^(1/2)-1)+2*I*(cot(d*x+c)-csc(d*x+c))^(1/2)*sin 
(d*x+c)*arctan((cot(d*x+c)-csc(d*x+c))^(1/2)*2^(1/2)+1)+I*(cot(d*x+c)-csc( 
d*x+c))^(1/2)*sin(d*x+c)*ln((cot(d*x+c)-csc(d*x+c)+(cot(d*x+c)-csc(d*x+c)) 
^(1/2)*2^(1/2)+1)/(-(cot(d*x+c)-csc(d*x+c))^(1/2)*2^(1/2)-csc(d*x+c)+cot(d 
*x+c)+1))+(cot(d*x+c)-csc(d*x+c))^(1/2)*sin(d*x+c)*ln((-(cot(d*x+c)-csc(d* 
x+c))^(1/2)*2^(1/2)-csc(d*x+c)+cot(d*x+c)+1)/(cot(d*x+c)-csc(d*x+c)+(cot(d 
*x+c)-csc(d*x+c))^(1/2)*2^(1/2)+1))+2*(cot(d*x+c)-csc(d*x+c))^(1/2)*sin(d* 
x+c)*arctan((cot(d*x+c)-csc(d*x+c))^(1/2)*2^(1/2)-1)+2*(cot(d*x+c)-csc(d*x 
+c))^(1/2)*sin(d*x+c)*arctan((cot(d*x+c)-csc(d*x+c))^(1/2)*2^(1/2)+1)-2*I* 
2^(1/2)*cos(d*x+c)+2*I*2^(1/2)+2*sin(d*x+c)*2^(1/2))*2^(1/2)
 
3.8.53.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 282 vs. \(2 (78) = 156\).

Time = 0.27 (sec) , antiderivative size = 282, normalized size of antiderivative = 2.76 \[ \int \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {8 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - d \sqrt {\frac {8 i \, a}{d^{2}}} \log \left ({\left (\sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {8 i \, a}{d^{2}}} + 4 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + d \sqrt {\frac {8 i \, a}{d^{2}}} \log \left (-{\left (\sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {8 i \, a}{d^{2}}} - 4 i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right )}{4 \, d} \]

input
integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")
 
output
-1/4*(8*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I 
*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - d*sqrt(8*I*a/d^2)*lo 
g((sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*s 
qrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(8*I*a/d^2) 
 + 4*I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + d*sqrt(8*I*a/d^2)*log(-(sqrt 
(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I* 
e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(8*I*a/d^2) - 4*I* 
a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)))/d
 
3.8.53.6 Sympy [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \]

input
integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**(1/2),x)
 
output
Integral(sqrt(I*a*(tan(c + d*x) - I))*cot(c + d*x)**(3/2), x)
 
3.8.53.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 540 vs. \(2 (78) = 156\).

Time = 0.41 (sec) , antiderivative size = 540, normalized size of antiderivative = 5.29 \[ \int \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sqrt {a} {\left (\left (2 i - 2\right ) \, \arctan \left (2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + 2 \, \sin \left (d x + c\right ), 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + 2 \, \cos \left (d x + c\right )\right ) + \left (i + 1\right ) \, \log \left (4 \, \cos \left (d x + c\right )^{2} + 4 \, \sin \left (d x + c\right )^{2} + 4 \, \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )^{2}\right )} + 8 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (d x + c\right ) \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )\right )}\right )\right )} - 4 \, {\left ({\left (\left (i + 1\right ) \, \cos \left (d x + c\right ) + \left (i - 1\right ) \, \sin \left (d x + c\right )\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + {\left (-\left (i - 1\right ) \, \cos \left (d x + c\right ) + \left (i + 1\right ) \, \sin \left (d x + c\right )\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )\right )} \sqrt {a}}{2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} d} \]

input
integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")
 
output
1/2*((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1 
/4)*sqrt(a)*((2*I - 2)*arctan2(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 
- 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c) - 1)) + 2*sin(d*x + c), 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^ 
2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2* 
d*x + 2*c) - 1)) + 2*cos(d*x + c)) + (I + 1)*log(4*cos(d*x + c)^2 + 4*sin( 
d*x + c)^2 + 4*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x 
+ 2*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2 + 
sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2) + 8*(cos(2*d*x 
 + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + 
c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + sin(d*x + c) 
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))))) - 4*(((I + 1) 
*cos(d*x + c) + (I - 1)*sin(d*x + c))*cos(1/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c) - 1)) + (-(I - 1)*cos(d*x + c) + (I + 1)*sin(d*x + c))*sin( 
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))*sqrt(a))/((cos(2*d*x 
 + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*d)
 
3.8.53.8 Giac [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int { \sqrt {i \, a \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(I*a*tan(d*x + c) + a)*cot(d*x + c)^(3/2), x)
 
3.8.53.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

input
int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(1/2),x)
 
output
int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(1/2), x)